

Incidence: Type 1 Diabetes

- □ Incidence is increasing world wide
 - □ In Finish children ages 0-14 years the incidence has increased from 20 per 100,000 to 50 per 100,000 over the last 40
- □ Type 1 diabetes is still the more common type of diabetes in Caucasian children and teens
- Type 1 is not related to diet (e.g caloric intake, junk food intake)

Pathophysiology of Type 1

- Type 1 Diabetes:
 Easy to diagnose, but pathogenesis still not completely understood
 - 2 hit phenomenon:
 - Conetic predisposition
 Second hit: infection?, environment?
 Not preventable, not predictable
 Evolves over weeks to months
- Type 2 is related to lifestyle and obesity
 Becoming more common in children especially in some ethnic groups

General Information

- □ Type 1 diabetes is the most common chronic disease of childhood
- Good control of diabetes will decrease the risk of long
- term complications

 Most recent information suggests that complication rate has been cut in half in the last 20 years—and we can do better
- Longer more productive, healthy lives
- Must invest in the future health of our kids
- ☐ Good control must be balanced with:

 - Risk of hypoglycemia
 Participation in all age appropriate activities

Epidemiology of Type 1

- □ INCIDENCE: 15/100,000 American children per
- 1M children in PCMC catchments area, 150 new cases per year (we actually have more)
 PREVALENCE: 1/400 by the age of 15 yrs.
- - Estimate 2500 in PCMC casement
- □ Peak occurrence at ages 5-7 and at puberty
- □ Incidence is increasing with the most marked increase in ages < 5 years

Genetic Susceptibility

- Increased risk to first degree relatives
 - Risk increases 10 fold, to 5-10%
 - Risk greater if father has diabetes
- ☐ HLA type
 - HLA-D3/4 increased risk in Caucasians
 - DQA1*0301, DQB1*0302, DQA1*0501, DQB1*0201 loci confer increased risk in Caucasians
 - Different types may be associated with different age at presentation and course

Autoimmunity

- DAISY
 - One or more antibodies present in 85-90% at time of diagnosis
 - Autoimmunity may develop at very young age and precede development of diabetes by years
 - Antibody titers may vary over time
- □ Antibodies associated with type 1 DM □GAD (glutamic acid decarboxylase) ■IAA (insulin autoantibody)
 - ■ICA512 (tyrosine phosphatase)

Etiology of DKA

- Hormonally mediated factors:Insulin deficiency results in catabolic state
 - Counterregulatory hormone excess which accelerates catabolism
 - glucagon, cortisol, catacholamines, GH
 - Neither is sufficient
- Incidence: presenting event for 30-40% of new onset diabetes
 - Probably actually less with education
- Morbidity: 65% of all pediatric diabetic admissions

Treatment of DKA

- Standardized protocols
 - Careful fluid resuscitation age appropriate volumes
 - Insulin infusion IV drip at 0.1 units/kg/hr
 - Frequent blood glucose and electrolyte monitoring
- Attention to complications
 - Cerebral edema, hypocalcemia, hypokalemia

Summary

- Most children do very well and recover in 12 - 24 hours, but it is potentially fatal
- □ There is no substitute for close monitoring of child and labs; use ICU if there is any question or very young child
- □ Family needs to know severity of illness
 - Severe DKA should never happen again with appropriate home care

New Diagnosis

- Inpatient education program at PCMC
 - Accomplish education of family in 3 days
 - Pathophysiology and etiology
 - Insulin dosing, insulin injections, and meal planning
 - Treatment of emergencies
- Outpatient phone contact every 1-2 days over the first 2-4 weeks
- □ Office visit to continue education at 2-4 weeks
 - Sick days and blood ketone testing, correction dosing, trend and pattern analysis

Goals of Pediatric Care

- □ Enable children/teens to participate in all age appropriate activities with their peers
- Risk:Benefit Ratio of Control
 - Maintain good to excellent control of diabetes
 - Minimize the episodes of hypoglycemia

Type 1 Diabetes: Treatment

- Replacement of insulin
 - Must be administered by injection
 - Must be coordinated with food intake
- There is little usual routine anymore
 - Used to be 3 injections/day
 - Now at least 3 injections and may be as many as 7
 - Goal is to individualize therapy so as to minimize the intrusion into life

Changes in Approach

- Intensify control
 - DCCT results and impact upon long term complications
- Increase monitoring
 - Lunch time testing
 - More frequent testing
 - Testing at different times
- Increase insulin injections
- Increase flexibility

Intensive Regimens

- Multiple dosing regimens
- ☐ Generally means more testing and more shots
 - Can be done safely even in young children
 - Must use age appropriate targets and adjust for individuals, prevent hypoglycemia
- Increases flexibility

Types of Insulin

- Long acting:

 - GlargineUltralente
- Intermediate acting:
 - NPHLente
- Short acting:
 Humalog[™], Novalog[™]
 - Regular
- Premixed:
 - 70/30, 75/25

Designer Insulins

- □ Humalog® (Lilly, LysPro insulin) and Novalog ® (NovoNordisc,
 - Rapid onset, short duration
 - Match with food intake
- □ Lantus® (Aventis, Glargine)
 - Longer acting, no significant peak
 - Works for about 80-90% of people
 - Multiple different uses in peds

Insulin Administration

- □ Insulin must be coordinated with food
- Dose will vary with blood glucose level, food intake, and exercise
- Traditionally, use of NPH eliminated routine administration of lunchtime shot
 - More frequent use of pumps and lantus insulin means more children need a lunch shot of insulin
 - - Lunch shots require calculation of insulin dose

 Cover carbohydrate content and correct "out of range" blood glucose

NPH Example

- Assume a 30 kg 8 year old
- Meals
 - Breakfast and lunch 60 grams of carbs, dinner 45 grams, afternoon and bedtime snack of 30 grams
- Insulin
 - Breakfast: 15 units NPH and 5 units novalog
 - Dinner: 1 unit of novalog per 15 grams of carbs
 - Bedtime: 8 units NPH
 - Correction for high glucose: 1 unit of novalog per 50 mg/dl over 150

Insulin Dosing: Lantus®

- □ Lantus provides 20-24 hour background or basal coverage
- □ Additional insulin given at times of food intake
 - Meals and snacks
 - Dose for carbohydrate intake and correction of high glucose
- Increased injections provide increased flexibility
 - Both schedule and intake of food

Lantus Example

- Assume a 60 kg adolescent
- Meals: ad lib
- But must be able to calculate carb content
- Insulin:
 - Lantus, 30 units sc q hs (9-10 PM)
 - Novalog = carb dose + correction at all meals and snacks
 - Carb dose: 1 unit of novalog per 10 grams of carbs
 - Correction dose: 1 unit of novalog per 25 mg/dl over 120 (no more often than q 3 hours)

Insulin Dosing: Pump

- More intensive management than NPH
 - More flexibility
 - Similar to Lantus insulin
- □ CSII or insulin pump
 - Continuous sc infusion of short acting insulin
 - Requires calculation of both a carbohydrate dose for food and correction dose
- □ In event of pump malfunction, have only 3-4 hours of insulin coverage

Blood Glucose

- Target range varies with age:
 - 100-200 mg/dl if age < 7
 - 80-180 mg/dl in 7-12 yo
 - 70-180 age > 12 years
- Target range is individualized
 - Modify based upon child's maturity and ability to recognize hypoglycemia (low blood sugar)
- Even in the best of all worlds, no one can achieve target range 100% of the time

Getting Control

- □ Blood sugar checks 4-6 times/day
 - Before meals, before bedtime and prn
- Written records
- Regular review of numbers
 - Contact with Diabetes office
 - Insulin dose changes usually no more than 1-2 times/week
- □ Control is not achieved instantaneously

Intensify Control

- Increase monitoring
 - Meters: smaller blood volume and faster results
 - Computer downloading at home
 - Non-invasive monitors
 - □ Trends not absolutes, still requires fingerpokes
- □ Flexibility
 - Increase the number of injections
 - New insulins

Post Prandial Blood Sugars

- □ Increased awareness of role of Postprandial blood sugars in elevating HgbA₁C
- □ Target of the DCCT: <180 mg/dl
 - Age dependent targets
 - Age <5 yo: <200 mg/dl
 - Age 5-11 yo: <180 mg/dl
 - Age 12-18 yo: < 150 mg/dl
 - Test 1-2 hours after eating

Long Term Management

- Blood glucose checks at least 4 times a day every day
 - Occasional post meal and overnight checks
- □ Insulin injections 3-6 times per day, every day
 - Dose calculated for blood glucose and food intake
- Quarterly office appointment
 - Hgb A₁C, review of blood glucose records
- Regular educational updates from CDE re: blood glucose management, meal planning
- □ Complication screening as adolescents■ Renal, Eye, Lipid, Neurologic

Hypoglycemia Treatment

- Low dose glucagon
 - May help prevent ER visits for mild hypoglycemia
 - Dilute glucagon and give 1 unit per year of age with insulin syringe
 - Can repeat in 20 minutes
- □ Severe hypoglycemic episode
 - Use standard dose of glucagon

Hyperglycemia: Blood sugar > 300

- ☐ Send home only if there are other problems, eg. vomiting
 - Check urine ketones
 - Moderate or large ketones requires more aggressive treatment, eg. additional insulin
- Hydrate with sugar free liquids
 - allow access to water and bathroom
 - prevent dehydration in hot weather
- Do not withhold food

Hyperglycemia

- □ Does not require leaving school
- □ Allow free access to water and bathroom
- □ Check ketones if blood sugar >300
 - If ketones large, child needs extra insulin, call parent(s) to come and get child
- Notify parent of blood sugar

Diet: Cow's Milk Protein

- Early introduction of cow's milk protein
 - Ongoing study in Europe (TRIGER)
 - DAISY: no correlation between cow's milk exposure and diabetes (JAMA, 2003)
 - BABYDIAB: no association with cow's milk (JAMA, 2003)
- □ Currently no evidence to implicate cow's milk exposure in development of type 1 DM

Diet: Cereals

- BABYDIAB:
 - Gluten exposure age
 <3 months: hazard
 ration of 4 (Cl=1.411.5; n= 4 positive
 children)
 - No increase risk with
 - exposure age >6mo.
 No increase risk of celiac disease associated antibodies
 - All positives had high risk HLA allele
- □ DAISY:
 - Cereal exposure age <3 months: hazard ration of 4.3 (Cl= 2-9.3)
 - Cereal exposure age > 7 months: hazard ratio 5.5 (Cl= 2-13.8)
 - Adjusting for HLA, family history, etc. ratio of 5.5 and 12.5
 - respectively

 34 positive and 16 developed diabetes

